植被冠層的光合特性是基于地球系統(tǒng)模型進(jìn)程的重要參數(shù),可用于理解全球碳循環(huán)。然而這些地球系統(tǒng)模型缺乏光合特性連續(xù)的時(shí)空信息,導(dǎo)致了很大的不確定性,無(wú)法解釋碳的源和匯以及大氣層與陸地生物圈的交換。此外,光合速率的準(zhǔn)確表征對(duì)于重設(shè)光合作用途徑以提高作物產(chǎn)量至關(guān)重要。選擇新品種需要在給定環(huán)境中將基因型與表型聯(lián)系起來(lái),但尚未以高通量方式實(shí)現(xiàn),這成為植物育種的主要瓶頸之一。為此,作為全球糧食安全問(wèn)題解決方案的一部分,迫切需要光合特性高通量表征技術(shù)的進(jìn)步,這對(duì)于深刻理解全球環(huán)境變化至關(guān)重要?;诖?,作者研究了安裝在移動(dòng)平臺(tái)上的高光譜成像相機(jī)是否能解決這些問(wèn)題,重點(diǎn)研究三種主要方法-基于偏最小二乘法回歸(PLSR)的反射光譜,光譜指數(shù)以及數(shù)值模型反演,以從11個(gè)煙草品種冠層高光譜反射率估算光合特性。結(jié)果表明,基于PLSR建立的反射光譜和光譜指數(shù)模型預(yù)測(cè)Vcmax和Jmax的R2為~0.8,高于數(shù)值反演的預(yù)測(cè)結(jié)果(R2為~0.6)。與反射光譜的PLSR相比,光譜指數(shù)的PLSR預(yù)測(cè)Vcmax(R2 = 0.84 ± 0.02, RMSE = 33.8 ± 2.2 μmol m?2 s?1)的結(jié)果更好,預(yù)測(cè)Jmax(R2 = 0.80 ± 0.03, RMSE = 22.6 ± 1.6 μmol m?2 s?1)的結(jié)果相似。...
發(fā)布時(shí)間:
2020
-
05
-
28
瀏覽次數(shù):249
摘要:本研究旨在理解不同缺水脅迫下10個(gè)水稻基本型的表現(xiàn)。記錄了不同脅迫水平下植物的相對(duì)含水量(RWC)以及在350-2500 nm范圍內(nèi)的高光譜數(shù)據(jù)。通過(guò)光譜指數(shù),多元技術(shù)和神經(jīng)網(wǎng)絡(luò)技術(shù)確定最佳波段,并建立預(yù)測(cè)模型。建立了新的水敏感光譜指數(shù),并就RWC評(píng)估了現(xiàn)有的水帶光譜指數(shù)。這些基于指數(shù)的模型可以有效地預(yù)測(cè)RWC,R2值為0.73至0.94。在350-2500 nm范圍內(nèi)的所有可能組合中,使用比率光譜指數(shù)(RSI)和歸一化光譜指數(shù)(NDSI)繪制等高線,并量化與RWC的相關(guān)性以確定最佳指數(shù)。光譜反射率數(shù)據(jù)(ASD Field Spec3 spectroradiometer測(cè)量)還用于建立偏最小二乘回歸(PLSR),然后進(jìn)行多元線性回歸(MLR)和人工神經(jīng)網(wǎng)絡(luò)(ANN),支持向量機(jī)回歸(SVR)和隨機(jī)森林(RF)模型來(lái)計(jì)算植物RWC。在這些多元模型中,PLSR-MLR被認(rèn)為是預(yù)測(cè)RWC的最佳模型,校正和驗(yàn)證的R2分別為0.98和0.97,預(yù)測(cè)的均方根誤差(RMSEP)為5.06。結(jié)果表明,PLSR是鑒定作物缺水脅迫的可靠技術(shù)。盡管PLSR是可靠的技術(shù),但如果將PLSR提取的最佳波段饋入MLR,則結(jié)果會(huì)得到顯著改善。使用所有光譜反射帶建立了ANN模型。建立的模型未取得令人滿意的結(jié)果。因此,使用PLSR選擇的最佳波段作為獨(dú)立x變量開(kāi)發(fā)了模型,發(fā)現(xiàn)PLSR-ANN模型比單獨(dú)的ANN模型...
發(fā)布時(shí)間:
2020
-
05
-
25
瀏覽次數(shù):230
土壤有機(jī)碳(SOC)源和匯之間的平衡會(huì)影響溫室氣體以及全球氣候。SOC儲(chǔ)量的微小變化會(huì)影響碳循環(huán),并可能顯著增加或降低大氣中的碳濃度。土壤碳的變化受氣候和土地利用的影響,并且在不同土壤中也會(huì)發(fā)生變化。為了更好地理解土壤有機(jī)碳的動(dòng)力學(xué)及其驅(qū)動(dòng)因子,作者收集了華北和東北地區(qū)1980年代和2000年代的數(shù)據(jù),其中2000年代的樣品利用ASD Fieldspec ProFR vis–NIR光譜儀進(jìn)行了漫反射光譜的測(cè)定用于土壤碳的預(yù)測(cè),并對(duì)各個(gè)時(shí)期土壤有機(jī)碳的空間變化進(jìn)行了數(shù)字土壤制圖。在1980年代,在30公里的方格中采集了585個(gè)土壤樣品,并在2003年和2004年對(duì)該區(qū)域進(jìn)行了重新采樣(1062個(gè)樣品)。該地區(qū)土地利用類(lèi)型主要是農(nóng)田,森林和草地。土地利用,地形因素,植被指數(shù),可見(jiàn)近紅外光譜和氣候因素作為預(yù)測(cè)因子,使用隨機(jī)森林預(yù)測(cè)土壤有機(jī)碳濃度及其時(shí)間變化。1985年平均土壤有機(jī)碳濃度為10.0 g kg-1,而2004年為12.5 g kg-1。在這兩個(gè)時(shí)期中,土壤有機(jī)碳變化相似且從南到北增加。據(jù)估計(jì)土壤有機(jī)碳儲(chǔ)量在1985年為1.68 Pg,在2004年為1.66 Pg,但是不同土地利用下土壤有機(jī)碳變化是不同的。在過(guò)去的20年中,平均氣溫升高,大面積森林和草原轉(zhuǎn)化為農(nóng)田。農(nóng)田土壤有機(jī)碳增加了0.094 Pg(+9%),而森林和草地土壤有機(jī)碳分別損失了0.089 Pg(?25%)和0....
發(fā)布時(shí)間:
2020
-
05
-
15
瀏覽次數(shù):86
摘要:氣候變化和人類(lèi)活動(dòng)的加劇使管理農(nóng)業(yè)水資源變得更為困難,特別是與作物類(lèi)型和生長(zhǎng)階段有關(guān)的水吸收模式的變化。因此,在華北平原,作者利用全自動(dòng)真空冷凝抽提系統(tǒng)(LI-2100)將植物木質(zhì)部和土壤樣品中的水分提取出來(lái),利用LGR水同位素分析儀(WIA-35d-EP,912-0026)測(cè)量各水體中δ18O和δ2H以研究冬小麥和夏季玉米輪作田的水分吸收模式。根據(jù)土壤含水量,利用層次聚類(lèi)分析將土壤層分為0-20 cm,20-40 cm,40-120 cm和120-200 cm。夏季玉米在三葉期(77.8%)和拔節(jié)期(48.6%)主要吸收0-20 cm土壤水,孕穗期(33.6%)和抽雄期(32.6%)主要吸收20-40 cm土壤水,吐絲期(32.0%)和乳熟期(36.7%)主要吸收40-120 cm土壤水,成熟(35.0%)和收獲期(52.4%)轉(zhuǎn)為吸收0-20 cm土壤水。冬小麥在越冬期(86.6%),幼苗期(83.7%),拔節(jié)期(45.2%),孕穗期(51.4%),抽穗期(28.8%)和成熟期(67.8%)主要吸收0-20 cm土壤水,在開(kāi)花期(34.8%)和乳熟期(25.2%)主要吸收20-40 cm土壤水。冬小麥干根重密度與水分吸收的貢獻(xiàn)呈正相關(guān)。然而,夏季玉米中未發(fā)現(xiàn)類(lèi)似相關(guān)性?;貧w分析表明冬小麥(CWU=-2.03×SVWC+92.73)和夏季玉米(CWU=-0.91&...
發(fā)布時(shí)間:
2020
-
05
-
15
瀏覽次數(shù):159
6372117373571266866723166.pdf
發(fā)布時(shí)間:
2020
-
03
-
30
瀏覽次數(shù):147
摘要:氫氧穩(wěn)定同位素作為水分子的組成部分,可以用來(lái)描述區(qū)域水循環(huán),因?yàn)樗麄兛梢越沂鞠嚓P(guān)水文過(guò)程的信息,包括降水,滲透,蒸發(fā)和蒸騰作用。盡管自然豐度低,但其重同位素對(duì)氣候和水文變化敏感。不同水體的穩(wěn)定同位素可用于研究水汽輸送,植物水源和水分利用模式,土壤水輸送和補(bǔ)給機(jī)制,徑流的形成和匯合,補(bǔ)給源和地下水機(jī)制等。因此,穩(wěn)定同位素在水文和氣候研究中很受關(guān)注。水文過(guò)程會(huì)對(duì)內(nèi)陸多山地區(qū)的水資源產(chǎn)生影響。為全面調(diào)查水循環(huán)的重要部分,作者以祁連山為研究對(duì)象,于2016年植物生長(zhǎng)季(5-9月)采集降水,植物,土壤,河水和地下水。每次降雨事件后采集降水,其他樣品每月采集一次。利用全自動(dòng)真空冷凝抽提系統(tǒng)(LI-2100)將植物和土壤樣品中的水分提取出來(lái),利用LGR液態(tài)水同位素分析儀DLT-100測(cè)量δ18O和δ2H以追蹤干旱山區(qū)水循環(huán)的一系列關(guān)鍵參數(shù),提取基線信息,以及研究降水和其他水同位素特征的變化。結(jié)果表明:“溫度效應(yīng)”很明顯,說(shuō)明氣候干燥;表層土壤水δ18O變化很大,深層土壤水趨于相似,隨著土壤深度的增加同位素值逐漸減小。土壤水同位素對(duì)降水脈沖的響應(yīng)具有不同邊界。在無(wú)降水發(fā)生的月份,檸條主要水源為0-30 cm的土壤水,發(fā)生降水事件時(shí)吸收水源則不同??傊?,穩(wěn)定同位素的研究結(jié)果為認(rèn)識(shí)水文過(guò)程提供了新的見(jiàn)解,并為了解干旱地區(qū)山區(qū)的水循環(huán)提供了新的手段。1.本研究的目標(biāo)(1)與最常用的方法(普通最小二...
發(fā)布時(shí)間:
2020
-
03
-
10
瀏覽次數(shù):110
點(diǎn)擊下載:廣州市秋季氣溶膠光學(xué)特性日變化.pdf
發(fā)布時(shí)間:
2020
-
02
-
24
瀏覽次數(shù):190
LICA LI-2100全自動(dòng)真空冷凝抽提系統(tǒng) 技術(shù)文獻(xiàn):斷陷盆地高原面典型巖溶洼地旱季土壤水氫氧同位素時(shí)空差異特征 以云南省蒙自斷陷盆地東山山區(qū)典型巖溶洼地為研究區(qū),通過(guò)野外采集土壤樣品與實(shí)驗(yàn)室測(cè)試分析相結(jié)合的方法,運(yùn)用穩(wěn)定同位素技術(shù)研究旱季不同深度土壤水氫氧同位素組成,揭示區(qū)內(nèi)土壤水氫氧同位素時(shí)空變化特征,為進(jìn)一步研究云南斷陷盆地山區(qū)土壤水分運(yùn)移機(jī)制和當(dāng)?shù)剞r(nóng)業(yè)合理利用和管理水資源提供科學(xué)依據(jù)。 結(jié)果如下:1. 土壤水δD、δ18O同位素值的變化范圍分別為-128.3‰~-27.6‰和-17.5‰~2.5‰,平均值分別為-96.1‰±20.7‰和-12.3‰±3.7‰,降雨轉(zhuǎn)化為土壤水和水分在土壤中重新分布時(shí)發(fā)生一定程度的氫氧同位素分餾。2. 旱季兩個(gè)月份土壤水氫氧同位素組成發(fā)生變化,4月份土壤水δD、δ18O同位素平均值分別為-86.3‰±23.83‰和-10.6‰±4.3‰,顯著高于2月份(δD:-106.1‰±9.5‰;δ18O:-14.1‰±1.6‰)(p<0.05),主要和4月份土壤水的蒸發(fā)作用強(qiáng)烈有關(guān)。3. 在空間上,坡地與洼地之間土壤水氫氧同位素組成存在差異,2月份坡地與洼地之間土壤水δD、δ18O值差異顯著(p<0.05),洼地土壤水δD、δ18O比坡地偏輕;4月份坡地與洼地之間土壤水...
發(fā)布時(shí)間:
2020
-
02
-
07
瀏覽次數(shù):145
ASD 地物光譜儀FieldSpec 4 技術(shù)文獻(xiàn):不同干旱條件下,夏玉米全生育期冠層吸收光合有效輻射比的高光譜遙感反演 冠層吸收光合有效輻射比(fAPAR)是植被生產(chǎn)力遙感模型的重要參數(shù),但關(guān)于不同干旱條件下作物全生育期的fAPAR遙感反演研究仍未見(jiàn)報(bào)道。本研究利用2015年夏玉米5個(gè)灌水處理模擬試驗(yàn)的高光譜反射率和fAPAR觀測(cè)資料,分析了不同干旱條件下夏玉米關(guān)鍵生育期fAPAR和高光譜反射率變化特征,探討了fAPAR與反射率、一階導(dǎo)數(shù)光譜反射率和植被指數(shù)的關(guān)系。 輕度水分脅迫和充分供水條件下,fAPAR較高;重度水分脅迫和重度持續(xù)干旱條件下,fAPAR較低。冠層可見(jiàn)光、近紅外光和短波紅外光區(qū)的反射率與fAPAR分別呈負(fù)相關(guān)、正相關(guān)和負(fù)相關(guān)關(guān)系。fAPAR與可見(jiàn)光和短波紅外光區(qū)的383、680和1980 nm附近的反射率的相關(guān)性最強(qiáng),相關(guān)系數(shù)均達(dá)-0.87。一階導(dǎo)數(shù)光譜反射率與fAPAR相關(guān)性強(qiáng)且穩(wěn)定的波段為580、720和1546 nm,相關(guān)系數(shù)分別為-0.91、0.89和0.88。9個(gè)常用植被指數(shù)與fAPAR呈線性或?qū)?shù)關(guān)系,其中,增強(qiáng)型植被指數(shù)、復(fù)歸一化植被指數(shù)、土壤調(diào)節(jié)植被指數(shù)和修正的土壤調(diào)節(jié)植被指數(shù)與fAPAR的關(guān)系模型最好,決定系數(shù)(R2)均在0.88以上,平均相對(duì)誤差分別為16.6%、16.6%、16.7%和16.2%;基于一階導(dǎo)數(shù)光譜反射率與...
發(fā)布時(shí)間:
2020
-
02
-
07
瀏覽次數(shù):124
M.K. Maid1*, R.R. Deshmukh21*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India*Corresponding Author: mm915monali@gmail.com Available online at: www.ijcseonline.org Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of diseas...
發(fā)布時(shí)間:
2019
-
03
-
19
瀏覽次數(shù):266