肉類富含豐富的蛋白質(zhì)和營(yíng)養(yǎng)物質(zhì),不僅能夠滿足我們的味蕾,還能夠提供我們身體所需的能量和營(yíng)養(yǎng)。
隨著肉類需求的增加,大規(guī)模的肉類生產(chǎn)和運(yùn)輸過程中,肉類的速凍可以一定程度保持食物的新鮮度和口感。然而,關(guān)于速凍解凍的肉類,和新鮮肉類的混淆,讓人難以分辨。
首爾大學(xué)的研究人員利用高光譜成像技術(shù),做了相關(guān)的研究。
使用高光譜成像儀和機(jī)器學(xué)習(xí)對(duì)新鮮和凍融牛肉進(jìn)行分類
由于對(duì)安全、可食用肉類的需求的不斷增加,冷凍儲(chǔ)存技術(shù)得到了不斷改進(jìn)。然而目前存在解凍肉在處理和銷售過程中被進(jìn)行了錯(cuò)誤的標(biāo)記,宣稱為新鮮肉類,這可能導(dǎo)致消費(fèi)者受到誤導(dǎo)或產(chǎn)生安全隱患。在這項(xiàng)研究中,使用高光譜圖像數(shù)據(jù)構(gòu)建了一個(gè)機(jī)器學(xué)習(xí)(ML)模型,用于區(qū)分新鮮冷藏、長(zhǎng)期冷藏和解凍的牛肉樣本。通過四種預(yù)處理方法,共準(zhǔn)備了五個(gè)數(shù)據(jù)集來構(gòu)建ML模型。使用PLS-DA和SVM技術(shù)構(gòu)建了模型,其中應(yīng)用散點(diǎn)校正和RBF核函數(shù)的SVM模型性能最佳。結(jié)果表明,利用高光譜圖像數(shù)據(jù)立方體,可以構(gòu)建區(qū)分新鮮肉類和非新鮮肉類的預(yù)測(cè)模型,這可以成為肉類儲(chǔ)存狀態(tài)常規(guī)分析的快速、非侵入性方法。
安裝在暗室中的高光譜數(shù)據(jù)采集系統(tǒng)的配置示意圖
基于此,來自首爾大學(xué)的研究人員使用Resonon Pika L 高光譜成像儀,在近紅外光譜的400-1000 nm波段內(nèi)獲取高光譜圖像數(shù)據(jù)立方體,進(jìn)行了相關(guān)研究。在本研究中,圖像采集系統(tǒng)安裝在暗室中,以確保完全消除外部光并能夠采集高光譜圖像。
將九個(gè)樣本同時(shí)放置在啞光黑色板上,通過移動(dòng)相機(jī)獲取高光譜圖像數(shù)據(jù)立方體。所有樣品均經(jīng)過光學(xué)穩(wěn)定處理,在采集高光譜數(shù)據(jù)之前將它們置于實(shí)驗(yàn)環(huán)境中 20 分鐘,消除由肌紅蛋白/氧肌紅蛋白含量差異引起的巧合差異。隨后,通過分離紅色肉部分,從高光譜數(shù)據(jù)立方體中提取了(ROI)的光譜,確保了只有紅色部分肉的光譜被提取用于分析。這個(gè)過程產(chǎn)生了高質(zhì)量的數(shù)據(jù)集,適用于后續(xù)的分析和解釋。使用四種預(yù)處理技術(shù)(MSC、SNV轉(zhuǎn)換、一階Savitzky–Golay濾波和最小-最大歸一化)對(duì)提取的光譜進(jìn)行模型開發(fā)。
本研究獲取的高光譜數(shù)據(jù)立方體中的光譜圖像。(a–c) 分別為“新鮮”、“受損”和“冷凍”樣品的 630–650 nm 平均圖像;(d-f)分別為“新鮮”、“受損”和“冷凍”樣品的 540-560 nm 平均圖像。
用于構(gòu)建肉樣本分類模型的高光譜數(shù)據(jù)立方體中的光譜。(a) 實(shí)驗(yàn)數(shù)據(jù)的完整光譜;(b) 每個(gè)實(shí)驗(yàn)組的平均光譜(實(shí)線)以及加減標(biāo)準(zhǔn)差后的光譜(虛線)。
這篇文章研究了使用NIR高光譜成像儀,對(duì)牛肉進(jìn)行分類,區(qū)分其“新鮮”、“受損”和“冷凍”狀態(tài)。通過將韓國(guó)產(chǎn)牛肉樣品劃分為新鮮冷藏、長(zhǎng)期冷藏和解凍狀態(tài),共獲得了九個(gè)高光譜圖像數(shù)據(jù)立方體,并通過滴水損失測(cè)試定量分析了牛肉樣品的狀況。本研究共收集了4950個(gè)光譜圖像,將其80%用作訓(xùn)練集,20%用作測(cè)試集。
在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),使用了四種預(yù)處理方法,包括MSC和SNV用于校正,Savitzky-Golay 1st濾波器用于平滑,Min-Max用于歸一化,以及原始數(shù)據(jù),共準(zhǔn)備了五個(gè)數(shù)據(jù)集。采用PLS-DA和SVM技術(shù)構(gòu)建模型,其中SVM模型使用了四個(gè)核函數(shù)。評(píng)估模型性能時(shí),準(zhǔn)確性是主要指標(biāo),同時(shí)對(duì)“新鮮”類別的F1分?jǐn)?shù)進(jìn)行了估計(jì),以獨(dú)立驗(yàn)證生鮮肉分類的性能。測(cè)試集的準(zhǔn)確率在幾乎所有模型中都超過90%,主要錯(cuò)誤是由于未能正確區(qū)分“受損”和“凍結(jié)”類別。具有散點(diǎn)校正和RBF核函數(shù)的SVM模型表現(xiàn)最佳,其準(zhǔn)確度達(dá)到96.57%,“新鮮”類別的F1分?jǐn)?shù)為100%。研究結(jié)果表明,通過純化高光譜圖像數(shù)據(jù)立方體篩選的光譜可以構(gòu)建一個(gè)預(yù)測(cè)模型,用于區(qū)分新鮮肉和非新鮮肉。這些模型在未來的實(shí)際肉類采購場(chǎng)所中具有可行性。